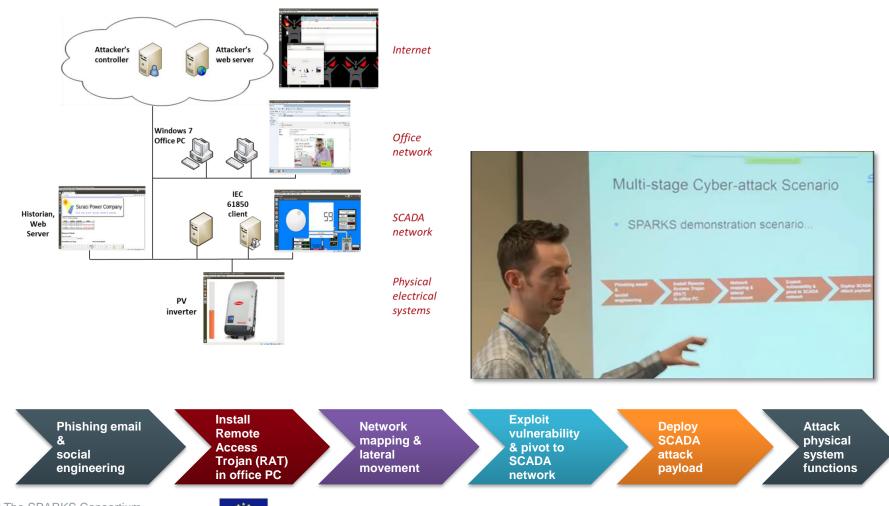
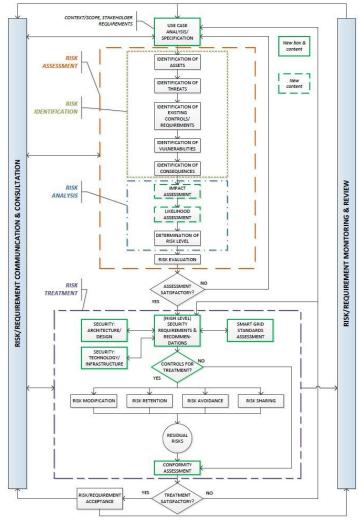


Risk Assessment for Cyber-Physical Smart Grid Systems

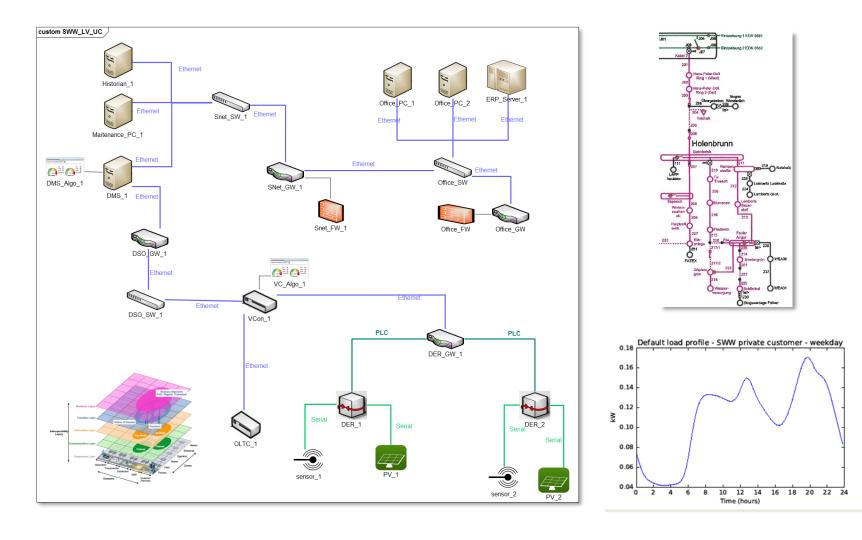
Paul Smith paul.smith@ait.ac.at AIT Austrian Institute of Technology

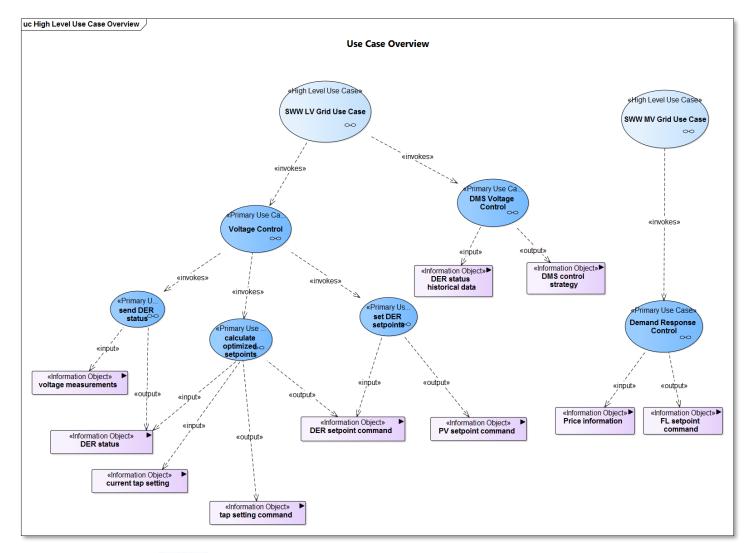

Novel Approaches in Risk and Security Management for Critical Infrastructures Vienna, 19th September, 2017

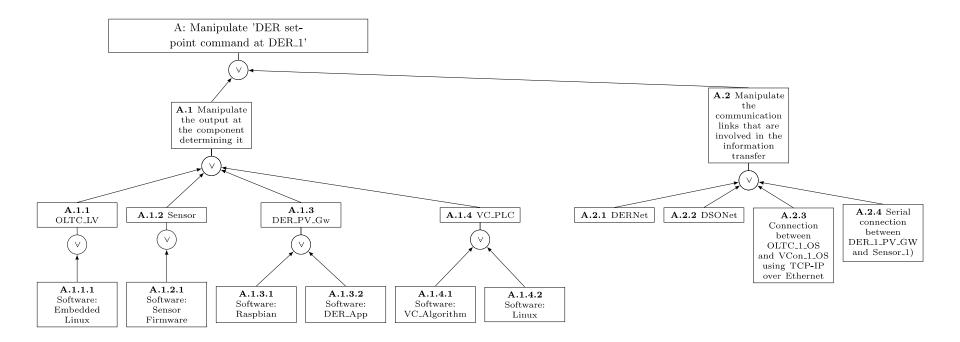
Advanced Persistent **Cyber-Physical** Threat: SPARKS Demonstration


© The SPARKS Consortium EU FP7 Programme Contract No. 608224

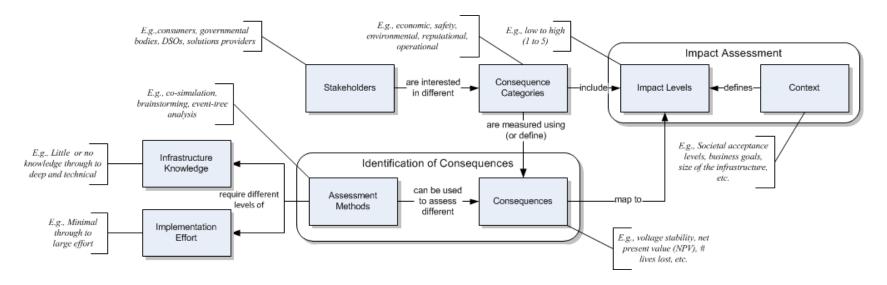
SPARKS Risk Assessment Framework


- Based on ISO/IEC 27005
- Familiar to the information security community
- Well-aligned with emerging cyber security requirements and compliance needs for critical infrastructure protection
- Guidance on how to implement the risk management process for a set of smart grid use cases

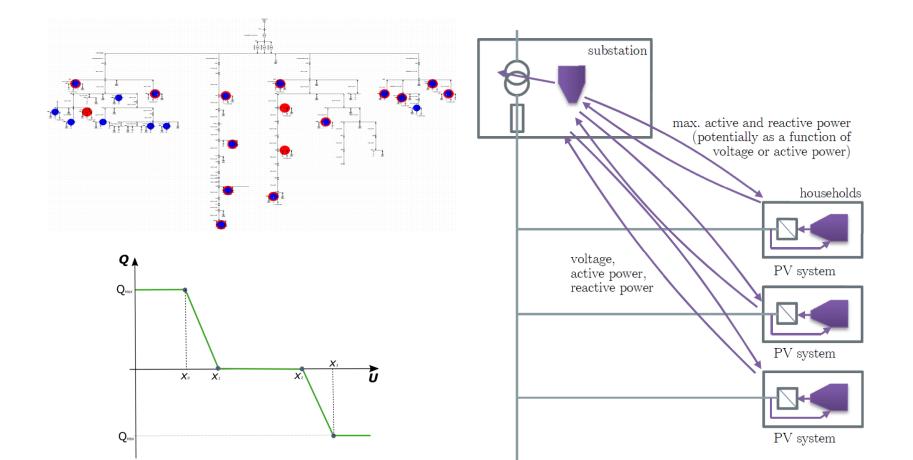

Context Establishment

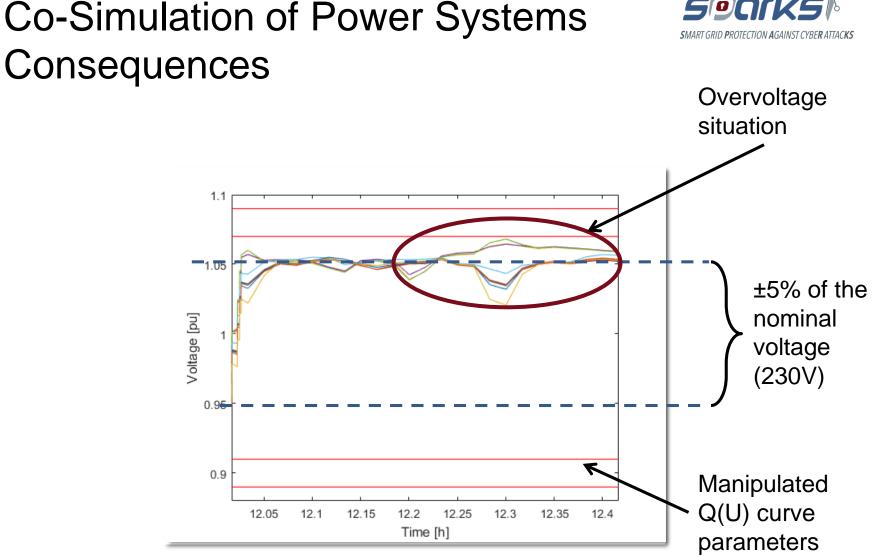

Identification of Assets

Identification of Threats: Attack Trees


- Developed re-usable attack patterns to support the development of trees
- Tool support for tree generation, using an Ontology that is created from an SGAM-based architecture description

Consequence Identification


- Consequences identification for information security is largely concerned with data-related (CIA) losses
- In the smart grid, consequences can be wide-ranging, e.g., cyber-physical concerns, and challenging to identify
- Smart grid stakeholders have varied concerns and capacity to analyse consequences



Co-Simulation of Cyber-attack Consequences

Likelihood and Impact Assessment

A.2 Manipulat the

ommunication

links that are

involved in the information transfer

> A.2.3 Connection

between OLTC_1_OS and VCon_1_OS using TCP-IP over Ethernet

A.2.1 DERNet A.2.2 DSONet

A.2.4 conne

DER_1_ and Se

- Assign consequences to an organisation-specific impact level
- Analyse the threat likelihood using, for example, HMG IS1

÷										
	HIGHLY CRITICAL	>5 MW	> 12% > 230 V > 8% < 230V	more than 50% population of Wunsiedel supply area affected (>10.000 customers)			critical infrastructures beyond SWW supply area affected			n sp
	CRITICAL	500 kW - 5 MW	10% to 12% > 230 V 6% to 8% < 230V	from 25% to 50% population of Wunsiedel supply area affected /5 000 Information Cardina			51			
	HIGH	50 - 500 kW	5% to 10% > 230V 4% to 6% < 230V	-	object (Integrity Attacks) Setpoint command to	(Scale of Attack) One DE on bus 43) R 7 is	variation (over-/ under- voltage)	Populati	ulatio
	MEDIUM	5 - 50 kW	2% to 5% > 230V 2% to 4% < 230V		DER (Figure 31)	effected Subset of		MEDIUM	n/a	
	LOW	<5 kW	< 2% +/- 230V		command to several DERs	DERs ar effecte		MEDIUM	r	n/a
		Energy supply (Watt)	Quality of supply / Voltage variation (over-/ under- voltage)		Tap (Down) setting command to OLTC (Figure 34)	One substatio is effecte		нісн	r	n/a
4 Serial nection tween 					Tap (Up) setting command to OLTC (Figure 35)	One substatio is effecto		CRITICAL	L	ow
eensor.1)					Tap setting command to OLTC <i>and</i> DER setpoints commands (Figure 36)	One substatio and al DERs ar effecte	e	HIGHLY CRITICAL	L	ow

A: Manipulate 'DER setpoint command at DER_1

> A.1.3 DER_PV_Gv

A.1.3.1

Software

Rasphian

A.1.3.2

Software DER_Ap

A.1 Manipulat

the output at

the componen

A.1.2 Sensor

A.1.2.1

Sensor

A.1.1 OLTC_LV

A.1.1.1

Embedded Linux

A.1.4.1 Software:

VC_Algorith

A.1.4 VC_PLC

A.1.4.2

Software

Conclusions

- The use of co-simulation can be used to examine in detail the effects of cyber-attacks to different information assets
 - However, there is a significant implementation overhead will operators implement simulations in practical settings?
 - It may prove to define a set of well-established reference cases, which could be examined in detail and published for others to consider in the context of their local environment
- The ontology-based tool support for threat identification enables complex analyses that would not have been possible
- Advanced Persistent Cyber-Physical Threats are likely to become more prevalent and sophisticated
- Enabling situational awareness and resilience is critical

Questions

Website

https://project-sparks.eu

Follow Us

@eusparks

Email

paul.smith@ait.ac.at

Telephone +43 (0) 664 883 90031

